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Abstract—Traffic signals play a critical role in smart cities for 

mitigating traffic congestions and reducing the emission in 
metropolitan areas. This paper proposes a bi-level optimization 
framework to settle the optimal traffic signal setting problem. The 
upper-level problem determines the traffic signal settings to 
minimize the drivers’ average travel time, while the lower-level 
problem aims for achieving the network equilibrium using the 
settings calculated at the upper level. Genetic algorithm is 
employed with the integration of microscopic-traffic-simulation 
based dynamic traffic assignment (DTA) to decouple the complex 
bi-level problem into tractable single-level problems which are 
solved sequentially. Case studies on a synthetic traffic network 
and a real-world traffic subnetwork are conducted to examine the 
effectiveness of the proposed model and relevant solution 
methods. Additional strategies are provided for the extension of 
the proposed model and the acceleration solution process in 
large-area traffic network applications. 

Index Terms—Smart cities, traffic signal setting, bi-level 
optimization, dynamic traffic assignment. 
 

I. INTRODUCTION 
NTELLIGENT transportation systems (ITS) are becoming 
increasingly important in smart cities [1]. Rather than 

counting solely on developing new roads or increasing road 
capacities, ITS utilizes advanced information and 
communication technologies such as real-time vehicle-to- 
vehicle (V2V) [2] and vehicle to infrastructure (V2I) [3] 
communications to smooth out traffic flows and reduce road 
congestion. ITS provides drivers with the critical traffic 
information that would help improve road safety and traffic 
efficiency [4].  

As a vital component of ITS, traffic signals can play a very 
important role in strategic traffic management that would lead 
to a preferred distribution of traffic flows [5]. The traffic 
management authority would need to consider offset time, split 
time (i.e., green time), cycle time and phase sequences of traffic 
signals in order to appropriately control traffic signals and 
reduce the travel time in congested roads. The lack of 
coordination among traffic signals can affect drivers’ total 
travel time and incur congestions in some areas which would 
further prolong the total travel time. On the other hand, a proper 
coordination among traffic signals can also respond positively 
to emission control and environmental concerns. 

ITS allows drivers and the traffic management authority 
exchange information in real time. Drivers report their trip 
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information (i.e. origin, destination and departure time) before 
departure. The traffic management authority uses the drivers’ 
information to update the traffic signal and trip demand 
database periodically. Given the ITS trip data, drivers are 
enabled to have more accurate perceptions of future network 
conditions and traffic management authority manages to 
minimize potential traffic congestion and be responsive to 
drivers’ trip demands by appropriately setting traffic signals. 

Different from other studies [6],[7] which optimized traffic 
signal settings conditioned on pre-defined drivers’ routes, we 
consider interdependencies of drivers’ choices and traffic 
signal settings in this paper. The traffic-signal-setting problem 
in nature is a leader-follower Stackelberg game which can be 
formulated as a bi-level optimization problem where the upper 
and the lower level problems belong to the leader (traffic 
management authority) and the follower (drivers), respectively. 
Traffic management authority wants to minimize drivers’ 
average travel time by choosing the optimal traffic signal 
settings. Note that traffic management authority will be able to 
evaluate the effects of a particular set of traffic signal settings 
only by taking drivers’ routes into account. In turn, drivers 
solve their own optimization problem to find the fastest route 
based on the determined traffic signal settings. As a result, the 
traffic-signal-setting problem is formulated as a bi-level 
optimization problem in our paper.  

The bi-level problem can be expressed as a mathematical 
program with equilibrium constraints (MPEC) by converting 
the lower-level problem as a set of additional constraints of the 
upper-level problem. For instance, if the lower-level problem is 
convex, then this lower-level problem can be recast using its 
Karush–Kuhn–Tucker conditions and integrated into the 
upper-level problem as a set of additional complementarity 
constraints. In this way, the bi-level optimization problem is 
converted into an MPEC. The bi-level optimization problem is 
difficult to solve mainly due to the tight couplings between the 
two levels. Thus, we use the Genetic Algorithm (GA) to 
decouple the original bi-level problem into two single-level 
problems and solve them sequentially. 

The main contributions of this paper are summarized as 
follows: 
(1) The paper proposes an optimization-based framework for 
determining adaptive traffic signal time settings in smart cities.  
(2) The paper formulates a comprehensive bi-level 
optimization model, which optimizes and coordinates split 
time, cycle time, phase sequences and offsets simultaneously 
for traffic signals at all intersections. 
(3) The paper decouples the bi-level problem into tractable 
single-level problems and employs GA to find near-optimal 
solutions with reasonable computation efforts. 
(4) The paper develops a microscopic simulation-based 
dynamic traffic assignment model for capturing the network 
equilibrium in traffic flows. 

The remainder of this paper is organized as follows: Section 
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II formulates the bi-level optimization model to determine the 
optimal setting of traffic signals. Section III explains the 
solution methods for the proposed optimization problem. 
Section IV presents and analyzes the numerical results from 
case studies. Section V gives some ideas on model extension, as 
well as solution process acceleration strategies for real-world 
large-area network applications. Relevant conclusions are 
summarized in Section VI. 

II. MODEL FORMULATION 

A. Traffic Signal Integration 
In practice, traffic lights located at any intersections are 

synchronized that would follow specific patterns for managing 
the traffic flow and safety. Accordingly, regional traffic signals 
at a given traffic direction can be integrated into a single traffic 
signal which would simultaneously regulate the flow of all 
vehicles approaching corresponding intersections from 
different directions. Such integration could reduce the number 
of control variables and accelerate the solution process in the 
traffic flow optimization problem. This paper assumes each 
integrated traffic signal, referred to as a traffic signal 
henceforth, performs traffic flow regulations in two 
perpendicular N-S and E-W directions.  

Fig. 1 shows the two distinct signal phases regulating the 
traffic at an intersection (arrows refer to allowable traffic 
directions). The traffic light color states in these two directions 
are mutually exclusive in each phase. For simplicity, we only 
discuss the color states in the E-W direction hereinafter. 
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(a) Green in the N-S direction          (b) Green in the E-W direction 

Fig. 1 Traffic flow regulation 
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Fig. 2 Signal phases of traffic light 

Each traffic signal comprises a sequence of phases (shown in 
Fig. 2) and each phase indicates the corresponding color state 
for traffic control. In this paper, each traffic signal is assumed to 
have three phases (i.e., offset, green and red). Following the 
initial offset phase, green and red phase are repeated 
periodically. The two phase sequence is dependent on the initial 
offset phase. Although the yellow phase exists in practice, its 
duration in the optimization process is subtracted from that of 
green state and only treated separately in the implementation 
process. 

B. Formulation of Bi-level Optimization  
This subsection describes the formulation for the optimal 

traffic signal setting problem. A list of notations and the 
corresponding definitions are given as follows. 

Notations Definition 
Indices 

N Index for intersections 
M Index for drivers 
T Index for time intervals 

 
Variables 

,n tI  Binary variable representing traffic signal at 
intersection n in time interval t, if equal to 1, direction 
E-W is green, otherwise, direction N-S is green 

O
nT  Offset of traffic signal at intersection n  

G
nT  Cyclic green time of traffic signal at intersection n 

R
nT  Cyclic red time of traffic signal at intersection n 

mr  Route choice for driver m 
*
mr  Optimal (fastest) route for driver m 

mr
T  Total travel time for driver m to finish the trip by 

choosing route rm 
Parameters 

N Number of intersections 
M Number of drivers 
NT Number of time intervals 

,0nI  Initial status of traffic signal at intersection n 

,0
G

nT  Initial green time of traffic signal at intersection n 

,0
R

nT  Initial red time of traffic signal at intersection n 

min,
G

nT , max,
G

nT  Minimum and maximum green time of traffic signal at 
intersection n 

min,
R

nT , max,
R

nT  Minimum and maximum red time of traffic signal at 
intersection n 

mR  Candidate routes for driver m 
Depart

mT  Departure time for driver m from its origin 

Functions 

( )Travel
mT ⋅  Total travel time for driver m on its trip during the time 

periods under study 
( )Trip

mT ⋅  Total time for driver m to finish its trip 

The objective function and constraints in the optimization 
problem are listed as follows. 

 Objective Function 
The objective is to minimize the average travel time for all 

drivers during the studied time intervals, which could also be 
viewed as the surrogate measure for the reduction of pollution 
and fuel consumption. The objective function is represented as 

 ( )*1min Travel
m m

m
T r

M ∑   (1) 

where 

 ( ) **

*

*
, if

,
,if

mm

m

Depart
m rrTravel

m m DepartDepart
mm r

T TT
T r m

T TNT T

NT

NT

+= ∀
+− >

≤
 (2) 

 Constraints on Green/Red Phases  
A very long green phase might result in prolonged waiting 

times for other drivers in an intersection, whereas a very short 
green phase might hamper the traffic safety. Thus, the green 
phase duration must be within a reasonable range as  
 min, max, ,G G G

n n nT T T n≤ ≤ ∀   (3) 
Similarly, red phase duration must be within a reasonable 

range as 
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 min, max, ,R R R
n n nT T T n≤ ≤ ∀   (4) 

 Constraints for Offset Phase Duration 
Traffic signals should be switched smoothly which could 

otherwise incur unexpected implications of traffic safety. This 
would include the offset phase (i.e., initial color state in the new 
settings). So 
 min, max, ,O O O

n n nT T T n≤ ≤ ∀   (5) 
where 
 ( ) ( ) ( ){ }min, ,0 min, ,0 ,0 min, ,0max ,0, 1O G G R R

n n n n n n nT I T T I T nT= ⋅ − + − − ∀⋅  (6) 

 ( ) ( ) ( )max, ,0 max, ,0 ,0 max, ,0 ,1O G G R R
n n n n n n nT I T T I T T n= ⋅ − − ⋅ − ∀+  (7) 

 Constraints for Traffic Signal States 
The durations of traffic signal states are solely dependent on 

signal setting decisions (i.e. O
nT , G

nT  and R
nT  for each 

intersection n). The relationships among states are represented 
as follows.  

The color and phase duration in the initial (offset) states is 
determined by O

nT , represented as 

 , ,0 , when 1 ,n t n
O

nI I t T n≤ ≤= ∀   (8) 
After offset phase, the duration of traffic signal cycles is the 
sum of G

nT  plus R
nT . Note that the cycle sequences are affected 

by the initial state. Accordingly, the first cycle is represented as 

 ,0
,

,0

1 , when
,

, h 1w en
1O X

n n
X

n
O G Rn t

n n n n n

T t T
T t T T T

I
I n

I
+ ≤ ≤

+ ≤ ≤



+ +
−= ∀


  (9) 

where 
 ( ),0 ,0 ,1X O R G

n n n n n n nT T T I T I= + ⋅ + − ∀⋅   (10) 
Then color cycles will be repeated as 
 , ,

, when 1 ,G R
n n

n t n t
O G R

n n nT T
I I T T nT t NT

−−
+ + + ≤ ≤= ∀   (11) 

 Route Constraints  
Each driver will use the traffic signal information and other 

drivers’ route decisions to look for a route with the minimum 
travel time, which is modeled as 

( )* * * * *
1,1 , 1 1 1arg min , ,..., , ,..., , ,..., ,

m m

Trip Depart
m m m N NT m m Mr R

r T T I I r r r r m− +∈
= ∀   (12) 

III. SOLUTION METHODOLOGY 

A. The Framework of the Proposed Solution 
The framework of the proposed bi-level optimization 

problem is depicted in Fig. 3. The upper and the lower level 
problems are managed by the traffic management authority and 
drivers, respectively. The traffic management authority would 
minimize drivers’ average travel time by optimizing traffic 
signal settings as it takes drivers’ route choices into account. In 
turn, drivers look for the fastest route based on the information 
on the traffic signal settings.  

The objective function (1) with constraints (2)-(11) forms the 
upper-level problem where O

nT , G
nT  and R

nT  ( )n∀  are decision 
variables for adjusting traffic signal settings and ,n tI  ( ),n t∀ ∀  
are state variables representing traffic signal state. In essence, 
given the traffic signal states ,n tI  , constraint (12) itself 
is an optimization problem for the fastest route *

mr  pertaining to 
a particular driver ( )m∀ . Considering the behavior of drivers, 

on congested roads, the fastest-route problem at the lower-level 
aims at achieving the network equilibrium based on the traffic 
signal information determined in the upper-level problem. In 
turn, the lower-level problem passes the drivers’ route 
information to the upper-level problem.  

The procedure for approximating an network equilibrium is 
referred to as the dynamic traffic assignment (DTA) [10] which 
is detailed in Section III.D. At such equilibrium no driver can 
reduce its travel time by unilaterally changing its route within 
any time interval. Different from deterministic user equilibrium 
assignment which assumes drivers are identical and have 
complete knowledge of the network conditions, the stochastic 
user equilibrium assignment is capable of modeling the 
variations in drivers’ perceptions of network conditions and in 
drivers’ decisions on route choices. In other words, even with 
the help of advanced intelligent transportation systems 
technologies, drivers’ perceptions of network conditions and 
their preferences of route choices are hardly identical. 
Accordingly, we model the lower level problem as a stochastic 
user equilibrium DTA problem, which is more appropriate in 
the environment of smart cities. 

Upper Level
Objective: Minimize the Average Travel Time

Decision: Traffic Signal Settings 

Signal 1 Signal 2 Signal N...

Driver 1 Driver 2 Driver M...

Signal States 
& Durations

Lower Level
Objective: Achieve the Network Equilibrium

Decision: Drivers’ Own Fastest Routes

Drivers’ Routes
& Trip Time

 
Fig. 3 Bi-level optimization framework 

B. Hybrid Genetic Algorithm 
The bi-level optimization problem is intrinsically difficult to 

solve mainly due to the tight couplings between the two levels. 
So we employ GA to solve the proposed bi-level optimization 
model by selecting the optimum cycle, splits and offsets 
simultaneously. GA could offer a high-quality near-optimal 
solution with an affordable computational cost as compared 
with conventional optimization methods [8]. In particular, the 
microscopic traffic simulation is successfully integrated with 
the global search capability provided by GA. To differentiate it 
from the traditional GA, we use a Hybrid Genetic Algorithm 
(HGA) for converting the bi-level optimization into an 
integrated problem with computationally feasible solutions. 
The integrated problem is composed of two single-level 
problems which are solved sequentially.  

The main process for applying HGA is illustrated in Fig. 4 
and described as follows. 
Step 1: Initialization. Form the random initial population, 
where the chromosome of each individual represents a 
candidate solution encoded as real-integer-valued string of 
length 3∙N.  Here, subscript s refers to individual s. Each gene in 

( ),n t∀ ∀
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the chromosome is a decision variable ( ,
O

s nT , ,
G

s nT  or ,
R

s nT ) 
representing the phase duration of a traffic signal. So 

 
min, , max,

min, , max,

min, , max,

, ,

, ,

, ,

O O O
n s n n

G G G
n s n n

R R R
n s n n

T T T s

T T T

T T T

n

n s

n s

≤ ≤ ∀

≤ ≤

≤ ≤

∀

∀ ∀

∀ ∀

  (13) 

In turn, each traffic signal’s setting is jointly determined by a 
subgroup comprised of three successive genes. In Fig. 5, the 
permutation of genes corresponds to the sequences of cyclic 
phases.  

Population Initialization

Fitness Evaluation

Solve Lower-Level Problems: 
Dynamic Traffic Assignment

Get the Average Travel Time

Terminated?

End

Evolution

Selection

Mating and Crossover

Mutation

Yes

No

Elitism

 
Fig. 4 Hybrid Genetic Algorithm 

 
Fig. 5 Chromosome representation 

The subgroups are consecutively placed in the chromosome for 
mapping the complete traffic signal settings. Such chromosome 
representation takes into account the interdependency of 
decision variables among adjacent traffic signals and phase 
durations of individual traffic signals [9]. 

Step 2: Fitness evaluation. This is the most distinctive step in 
the proposed algorithm, where an individual’s fitness value in 
the current population is evaluated. The individual’s fitness is 
the objective value of the upper-level problem, which is 
computed after solving the lower-level problem once the traffic 
signal settings (represented as individual chromosomes) are 
given. In other words, individuals correspond to a feasible 
solution of the original bi-level problem which is calculated 
sequentially by performing a global search for best 
individual(s) at the upper-level problem and finding the 
corresponding solution in the lower-level problem. 
Specifically, traffic signals are set according to (8)-(11) for 
individual s defining ,

O
s nT , ,

G
s nT  and ,

R
s nT  ( n∀ ), and the 

corresponding fitness value is calculated by solving the 
following problem, 

 ( )*
, ,

M
Travel

s m s m
m

f T r s= ∀∑   (14) 

where 

( )
, ,

* * * * *
, ,1,1 , , ,1 , 1 , 1 ,arg min , ,..., , ,..., , ,..., , ,

s m s m

Trip Depart
s m m m s s N NT s s m s m s Mr R

r T T I I r r r r m s− +∈
= ∀ ∀  

(15) 
Intuitively, the fitness value is obtained by simultaneously 
locating the optimal route for each driver (i.e., network 
equilibrium), which is decoupled from the upper-level problem.  
Step 3: Evolution. The population is updated by replacing all 
individuals at the current generation with new potential 
solutions based on fitness values. This step is implemented 
using the following four genetic operators:  
Elitism: A subset of individuals with the best fitness value(s) is 
selected and passed on to the next generation, which guarantees 
that the solution quality at the next generation will not be any 
worse than that of the current generation, thereby avoiding any 
solution oscillations. Note that these elitist individuals will not 
go through the following three operators. 
Selection: The remaining individuals of the current generation 
are randomly chosen as the parents of the next generation using 
the tournament selection mechanism (representing the best 
fitness value of each tournament) until the number of parents is 
equal to the size of the population excluding the elitist 
individuals.  
Mating and Crossover: The selected parents are randomly 
arranged in pairs to produce two solutions for the next 
generation. For simplicity, a single-point crossover is 
implemented by randomly selecting a point in each pair and 
swapping the right-side substrings of the parent strings in the 
pair. 
Mutation: Individuals are randomly self-mutated to achieve a 
local search around the current solutions, thereby avoiding the 
premature convergence and maintaining the population 
diversity. We utilize an individually adaptive mechanism 
which adapts the individual’s mutation probability according to 
its fitness value so as to probably maintain the individuals with 
above-average fitness values and disrupt those with 
below-average fitness values. Particularly, an individual’s 
mutation probability ( )mu

sp s∀  is determined by the following 
equation [11], [12]: 

 ( )
max

max min minmax

max

, if
,

, if

mu mu mu avgs
smu avg

s
mu avg

s

f fp p p f f
p sf f

p f f

 −
− ⋅ += ∀−

 <

≥   (16) 

where max
mup  and min

mup  denote the pre-specified maximum and 
minimum mutation probability, respectively; sf , maxf  and avgf  
represent the fitness value of individual s, the global best fitness 
value (which is equal to the best fitness value of the current 
generation), and the average fitness value of the current 
generation, respectively. Then a random number is generated 
for each gene of individual s and compared with the determined 
mutation probability mu

sp ; if the random number is larger than 
mu
sp , this gene is replaced by a new random value within its 

range. 

Step 4: Termination criterion. If either the generation number 
is at the threshold or the fitness level is viewed satisfactory 
(e.g., the global best fitness value has not changed for 50 
consecutive generations), the algorithm will be terminated with 
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the global best value as the final solution; otherwise, the next 
generation starts with the new population and go through the 
process starting from Step 2. 

C. Revised Dijkstra’s Algorithm 
Here we determine the expected fastest route for each driver 

at its departure point. First, traffic network is abstracted to 
node-edge graph by representing intersections as nodes and 
lanes as directed edges. If the cruise time for all edges does not 
vary through the trip, this fastest-route problem can then be 
solved by revising the Dijkstra’s algorithm [13]. Algorithm 1 
( m∀ ) calculates the fastest route as shown below.  

Algorithm 1: Revised Dijkstra’s Algorithm 
Input: Driver m’s origin and destination nodes sm and dm, and its 
departure time Depart

mT  

Output:  Driver m’s fastest route *
mr  and travel time *

mr
T  

1: { }all the nodes←U , ← ∅V  

2: , m

Arrive Depart
m o mT T←  

3: for each i ∈ U \ {om} do 
4:       ,

Arrive
m iT ← ∞  

5:       [ ]Prev i ← ∅  
6: while md ∈ U  do 

7:        { }*
,arg min Arrive

m ii
i T

∈
←

U
 

8:        *\{ }i←U U , *{ }i←V V U  
9:         for each adjacent node j of i* in U do 

10:               if ,
Arrive

m jT > * * *, , ,
Arrive Cruise Wait

m i m i j m i j
T T T

− −
+ +  then 

11:                   * * *, , , ,
Arrive Arrive Cruise Wait

m j m i m i j m i j
T T T T

− −
← + +  

12:                   [ ] *Prev j i←  

13: *
mr ← ∅ , mi d←  

14: while [ ]Prev i ≠ ∅  do 
15:        { }* *

m mr r i← U  
16:        [ ]i Prev i←  

17: * , ,m mm

Arrive Arrive
m d m or

T T T= −  
 

The travel time consists of the cruise time along traversed 
edges and the waiting time at traversed nodes. Neglecting the 
accelerating and decelerating processes, the cruise time ,

Cruise
m i jT −  

of driver m along the directed edge i-j is determined by 
 , ,/Cruise

m i j i j m i jT L V− − −=   (17) 
where i jL −  is the length of edge i-j; ,m i jV −  is the expected speed 
on edge i-j for driver m. In addition, when drivers arrive at the 
end node of the traversed edge, they will enter the downstream 
edge immediately if there is no traffic signal at this node or the 
traffic signal is green; otherwise, they will join the queue at the 
end of the edge and wait until the traffic signal turns green at a 
later time. To be more realistic, the effect of yellow signals is 
also considered here, which depend on the driving behavior 
(aggressive or mild). In other words, when the signal is yellow, 
an aggressive driver tends to pass the intersection quickly but a 
mild driver tends to stop. Accordingly, the waiting time for 
driver m at node i* who is traveling to node j is calculated by,  

 

( )
* * *

* * *

, ,

,

0, if
, if

, if

Wait NextG Arrive
m i j i m i

NextR Arrive R
m i m i i

green
T T T red

T T T yellowd

−


= −
 ⋅ − +

 (18) 

where *
NextR

i
T  and *

NextG
i

T  are the time instants when the traffic 
signal at node i* turns green and red, respectively; mδ  is a 
binary indictor representing driving behavior of driver m (if 
driver m is aggressive, mδ  equals 1, otherwise, 0). For 
simplicity, the aggressiveness of driver m is sampled by 

 ( )
( )

0,if 0,1 0.5
,

1,if 0,1 0.5m
rand

m
rand

d
 <

 ≥

= ∀   (19) 

in which ( )0,1rand  is a uniform distributed single random 
number which is between 0 and 1. 

D. Dynamic Traffic Assignment 
Each driver’s choice for the fastest route depends on not only 

traffic signal sequences but also the level of traffic congestion. 
The congestion level, in turn, depends on the routes selected by 
other drivers. Considering that such interdependencies make it 
difficult to predict the actual edge-cruise time, the fastest route 
cannot be computed solely by the revised Dijkstra’s algorithm. 
Furthermore, the optimal solution of the lower-level problem 
corresponds to the network equilibrium for all drivers. It is also 
difficult to solve the lower-level problem analytically mainly 
due to the mutual interactions among drivers. Instead, we resort 
to the microscopic simulation-based DTA, which is executed 
by invoking the revised Dijkstra’s algorithm and microscopic 
traffic simulation iteratively.  

At each iteration, DTA finds the expected fastest route for 
each driver using the revised Dijkstra’s algorithm. As this 
iterative process continues, the fastest routes and the resulting 
traffic assignment tend to be brought closer to the network 
equilibrium. Note that if all drivers choose the expected fastest 
routes at each step, these routes might become congested and 
would no longer be the fastest. Thus, alternative routes should 
be also considered by travelers at each iteration. 

Once all the drivers have chosen their routes at departure, the 
road traffic dynamics are obtained by microscopic traffic 
simulation, where drivers follow their routes without further 
updates along their trips. In this paper, microscopic traffic 
simulation is conducted using the Simulation of Urban 
Mobility (SUMO) [14] which is an open-source agent-based 
microscopic road traffic simulator. In SUMO, the movement of 
individual vehicles is simulated based upon car-following [15] 
and lane-changing [16] theories, which render the simulation to 
be more consistent with the real-world scenarios. Thus, the 
travel times calculated by the microscopic traffic simulation are 
reliable. Furthermore, SUMO provides trajectories for each 
vehicle, which are vitally helpful in extracting temporal and 
spatial dynamics of drivers’ behaviors. For instance, it is 
convenient to obtain the average cruise time, speed, or density 
on individual edges during any specified time intervals. 

The procedure for performing the microscopic-simulation 
based DTA is shown in Fig. 6 and illustrated as follows.  
Step 1: Initialization. Initialize the traffic network and 
determine each edge’s initial expected cruise time for drivers 
departing at different time. 
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Step 2: Finding expected fastest routes. Determine the 
expected fastest route for each driver in the traffic condition 
with time-dependent expected edge-cruise time. In such 
condition, edge-cruise time is approximated by the average 
speed on this edge from driver m’s departure time Depart

mT  to the 
end of simulation. The speed is obtained based on the results of 
microscopic traffic simulation discussed in the next subsection. 
Note that if there is no driver on this edge during the relevant 
simulation periods, the edge’s speed limit is used as its 
expected speed. 
Step 3: Forming or updating route choice set. Drivers are 
assumed to opt for other feasible routes besides the expected 
fastest routes at each iteration. That is to say, each driver 
randomly chooses his routes from the candidate route set and 
the probabilities of these candidate routes are determined by the 
revised method of successive averages [17],[18], as shown 
below. 

Obtain the Expected Fastest Route for Each Driver
Using Revised Dijkstra’s Algorithm

Form/Update Candidate Route Set for Each Driver
Using the Revised Method of Successive Averages 

Conduct Microscopic Simulation for Road Traffic
In the environment of  SUMO 

Adjust Each Edge's Expected Cruise Time for Each Driver 
Based on each edge’s average cruise speed from the simulation 

Terminated? End

Determine Initial Expected Cruise Time of Each Edge 
Based on the initial network condition 

Prepare Data Set 
Road network information, Traffic signal control logics, 

Drivers’ trip information and departure time 

No

Yes

 
Fig. 6 Dynamic Traffic Assignment 

 First iteration (when k=1) 
Here, superscript k refers to the k-th iteration. The initial 
candidate route set is formed for each driver, which includes its 
initial expected fastest route and some other feasible routes. 
Note that there is no need to exhaustively search all feasible 
routes. Instead, at most five representative routes for each 
driver are included in the initial set in order to accelerate the 
convergence speed. Accordingly, the candidate route set is 
defined as 
 { } { }( ) ( )*k k

m mR r initial assigned routes← U   (20) 
and the probability for each route is determined by, 
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In the above equation, η  is a user-defined constant within the 
range [0, 2]; ( )

, m

k
m rp  is the probability to choose the route mr  at 

the k-th iteration for driver m; ( )
m

k
rT  is the expected travel time 

on route mr  as a result of the expected traffic condition at the 
k-th iteration. Note that ( )

m

k
rT  can be multiplied by a user- 

defined parameter for representing driver m’s aversion to the 
longer travel time. 
 Subsequent iterations (when k>1) 
If the expected fastest route ( )*k

mr  is included in the previous 
candidate route set ( 1)k

mR −  (i.e. ( )* ( 1)k k
m mr R −∈ ), the probabilities 

are determined by 

 

( 1) ( ) ( )*
, ,

( ) ( 1) ( )* ( 1)
, ,

( ) ( 1)
,

1 , if
1 1

,1 , if and
1

, if
1

m m

m m

m

k k k
m r m r m m

k k k k
m r m r m m m m

k k
m r m m

p r r
k k

p mp r r r R
k

r R
k

η η a

η

η a

−

− −

−

   − ⋅ + ⋅ =    + +   
  = ∀− ⋅ ≠ ∈  + 
   ⋅ ∉  + 

 (23) 
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Then the candidate route set remains unchanged (i.e., 
( ) ( 1)k k
m mR R −← ). If the expected fastest route ( )*k

mr  is newly 
generated, (i.e., ( )* ( 1)k k

m mr R −∉ , excluded in the previous candidate 
route set ( 1)k

mR − ) , the probabilities are determined by 
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Then the candidate route set is updated as { }( ) ( 1) ( )*k k k
m m mR R r−← U . 

Clearly, the routes with longer travel times are assigned lower 
probabilities. Besides, the candidate route set contains the 
expected fastest route from all previous iterations. In fact, those 
retained from very early iterations are probably very remote 
from the more recently identified fastest routes. Meanwhile, the 
newly-generated expected fastest routes identified at later 
iterations are presumably closer to the actual fastest routes, but 
receive lower probabilities. Thus, a restarting mechanism is 
applied to reset the iteration counter to 1 at designated iterations 
(e.g., every 10 iterations in this paper) in order to minimize the 
direct influences of earlier iterations and adjust the probabilities 
for routes identified at later iterations. Accordingly, this 
algorithm tends to offer a better convergence performance. 
Step 4: Microscopic traffic simulation. Perform the 
microscopic traffic simulation in SUMO using the chosen 
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routes so as to obtain the actual travel time ( )k
mr

T  along driver 

m’s chosen route ( )k
mr  ( m∀  ).  

Step 5: Termination Check. Approximated error for the 
network equilibrium solution is measured by the following 
relative gap at each iteration, 
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If either a pre-specified tolerance level for the approximated 
error (e.g., 5% [19]) or maximum number of iterations is 
reached, this algorithm will be terminated and the chosen routes 
at the last iteration will be assumed to represent the network 
equilibrium; otherwise, the next iteration will start by adjusting 
each edge’s expected cruise time according to the microscopic 
simulation results and reinitiating the process from Step 2. 

IV. CASE STUDIES 

A. Synthetic Traffic Network 
To compare the performance of the revised Dijkstra’s 

algorithm with the original one, we create a synthetic traffic 
network (see Fig. 7) with the parameters in Table 1. Without the 
loss of generality, we assume each intersection is controlled by 
traffic signals with the same settings for traffic flow regulations 
in two perpendicular directions (see Fig. 8). 

Assume that an aggressive driver enters at the bottom-left 
intersection and finishes its trip at the top-right intersection in 
the free-flow condition. Without considering the waiting time 
in calculating the total travel time, there will be multiple and 
equally designated fastest routes that are computed by the 
original Dijkstra’s algorithm. Fig. 9 lists three of such routes as 
an example. However, it is clear that these routes all have the 
same total cruise time of 800 s, with a totally different waiting 
time (0 s, 60 s, 80 s, respectively). 

Table 1 Parameters for case studies 
Network Size 8 km ×8 km 

Equally-divided Block Length 2 km 
Vehicle Speed Limit 20 m/s 

Traffic signals Location At each intersection 
 

N

S

W E

TL

 

Fig. 7 A synthetic signal network 

……t=1

Periodically Repeated Traffic Signals

54 s 60 s 54 s 60 s6 s 6 s  
Fig. 8 Traffic signal settings 

TTrip=880 sTTrip=860 sTTrip=800 s
Fig. 9 Travel time comparisons 

Then the selection of routes will lead to distinct total travel 
time, which cannot be distinguished by the original Dijkstra’s 
algorithm. Obviously, the route with a total travel time of 800 s 
is the fastest route, which is also the optimal solution according 
to the revised Dijkstra’s algorithm. The proposed algorithm 
offers a more suitable solution for the optimal traffic signal 
setting problem. 

B. Urban Traffic Subnetwork 
To further examine the effectiveness of the proposed model 

and the corresponding solution method, an urban traffic 
subnetwork (i.e., vicinity of Illinois Institute of Technology and 
the Bronzeville community in Chicago) shown in Fig. 10 and 
obtained from OpenStreetMap [20] is used in our experiments.  

1 2 3 4 5

6 7 8 9

1011121314  
Fig. 10 Urban traffic subnetwork in Chicago 

The intersections in our study are all labeled in which the 
traffic signals are controlled by logics. The drivers’ trip 
information is estimated by the average daily traffic counts 
[21]. The estimated information is close to the actual number of 
vehicles crossing the points with installed sensors in certain 
streets on an average weekday, which is denoted as the base 
case. The studied time is 1000 s and all the drivers are assumed 
to uniformly insert into the subnetwork in the first 500 s. The 
traffic signal requirements are listed in Table 2 and the HGA 
parameters are listed in Table 3. The traffic subnetwork is built 
in SUMO as shown in Fig. 11 with the relevant vehicle settings 
given in Table 4.  

Table 2 Traffic signal requirements 

# Initial State Green Time Red Time 
State Duration/s Min/s Max/s Min/s Max/s 

1 Red 20 30 60 20 40 
2 Red 10 30 60 40 80 
3 Green 10 30 60 30 60 
4 Green 20 30 60 30 60 
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5 Red 20 30 60 40 80 
6 Green 10 20 40 40 80 
7 Green 10 20 40 30 60 
8 Red 10 20 40 30 60 
9 Green 10 20 40 40 80 

10 Green 20 30 60 40 80 
11 Green 20 30 60 30 60 
12 Green 10 30 60 30 60 
13 Red 30 30 60 40 80 
14 Red 10 30 60 20 40 

Table 3 Parameters of HGA 
Population Size 20 
Max. Generation 50 

Elite Number 1 
Tournament Pool Size 4 

Min. and Max. Mutation Probability 0.05, 0.5 

 
Fig. 11 Test traffic subnetwork in SUMO 

Table 4 Vehicle settings in SUMO 
Acceleration Ability 2.6 m/s2 

Deceleration Ability 4.5 m/s2 
Driver’s Imperfection 0.5 

Driver’s Reaction Time 1.0 s 
Vehicle Length 4 m 

Minimum Gap between Vehicles 2 m 

In addition, vehicles’ movements along every lane-to-lane 
link (lane-to-lane link means turning left or right, or going 
straight) at any intersection are controlled by the relevant 
traffic signals (see Fig. 12). The calculated optimal phases of 
integrated traffic signals are thus divided into a set of 
coordinated link-based signals at each intersection in SUMO. 

1

3

2

4567

8

9

 
Fig. 12 Traffic signals at intersection 8 

For instance, Table 5 shows the coordinated settings in the 
base case for link-based signals in Fig. 12. Here, default 
settings are generated by SUMO to adhere to traffic rules.  To 
consider the suitability of the proposed model and the 
corresponding solution methods, we double the number of 
drivers in the new case to form a heavy-loaded case. The 
convergence process of HGA in the base and heavy-loaded 
cases is shown in Figs. 13 and 14, respectively. Obviously, the 
final settings optimized by HGA after 50 generations are better 
than the default settings in both cases. Specifically, in the base 
case, the average travel time is reduced from 465.2 s with 
default settings to 429.1 s with optimal settings after 50 
generations; in the heavy-loaded case, the average travel time is 
reduced from 604.7 s with default settings to 510.8 s with 
optimal settings after 50 generations. It is clear that HGA 
performs better in handling heavy-loaded cases when there 
might be more potential cases of congestion. 

Table 5 Link-based signal coordination at intersection 8 

Intersection # Phase Intersection Signal Duration 
1, 2, 8, 9 3, 4, 5, 6, 7 Default Optimal 

8 

A Red Green 31 42 
B Red Yellow 6 6 
C Green Red 31 26 
D Yellow Red 6 6 

 
Fig. 13 HGA convergence process in the base case 

 
Fig. 14 HGA convergence process in the heavy-loaded case 

The representative results for the DTA convergence in both 
cases are shown in Fig. 15. Here, DTA converges to the 
network equilibrium in both cases. Especially for the base case, 
DTA would only require three iterations to converge mainly 
because there are very few cases of congestion during the 
simulation process and the expected fastest routes are very 
close to the actual fastest ones. 
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The representative convergence process of DTA for 
identifying the expected fastest routes with and without waiting 
time are shown in Figs. 16 and 17, respectively. Intuitively, the 
calculation of the expected fastest routes with waiting time 
renders the gap to converge more rapidly in both cases. Hence, 
DTA with the consideration of waiting time is a more efficient 
approach to achieving the network equilibrium. 

 
Fig. 15 DTA’s convergence process 

 
Fig. 16 DTA convergence process in the base case 

 
Fig. 17 DTA convergence process in the heavy-loaded case 

V. MODEL EXTENSION AND SOLUTION ACCELERATION FOR 
REAL-WORLD LARGE-AREA APPLICATIONS 

A. Model Extension for Traffic-Adaptive Control Logics 
Although the traditional fixed-time traffic signal control 

mechanism is used most widely in practical cases, the 
fixed-time tends to cause traffic congestion, especially when 
the traffic density is high in urban areas. In this context, 
adaptive traffic control mechanisms become increasingly 
popular. The adaptive approach can overcome the 
disadvantages of the fixed-time control by detecting the traffic 

flow in real time and efficiently responding to any changes in 
the traffic situation. 

The proposed bi-level optimization model can be easily 
extended to consider the traffic-adaptive signals. Initially, the 
open-source interface TraCI4Matlab [22] is employed to enable 
Matlab to interact with SUMO for the implementation of 
agent-based algorithms in a server-client mechanism as shown 
in Fig. 18.  

Matlab (Client)
Implementation of Control Algorithm 

SUMO (Server)
Microscopic Traffic Simulator

 
  

TraCI4Matlab (Interface)
TCP-based Architecture

 
Fig. 18 Interactive simulation framework 

In addition, green (red) phase durations of traffic signals 
controlled by the traffic adaptive mechanism can be adjusted in 
real time within allowable ranges,  
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nT ), rather than G
nT ( R

nT ), are 
to be optimized ( n∀ ) and G

nT ( R
nT ) is configured in real time 

based on the agent-based algorithms. Thus, (3) and (4) for 
traffic-adaptive signals are replaced by the following set in the 
bi-level optimization model, 
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B. Acceleration of Solution Process at Upper-level Problem 
1) Parallel Processing for HGA 

The proposed HGA can be parallelized in terms of the 
master-slave implementation. Accordingly, a master is the 
main processor which generates and evolves the full population 
of chromosomes and assigns a certain fraction of the 
individuals to slave processors. The slaves evaluate fitness 
values by conducting simulation separately for the assigned 
fraction and return their values (see Fig. 19). Accordingly, 
parallel processing boosts the speed of global search and offers 
a full advantage for searching the entire feasible region. 

Master Processor
Initialization

Evolution

Slave Processor 1
Fitness Evaluation

Slave Processor 2
Fitness Evaluation

Slave Processor S
Fitness Evaluation

...
 

Fig. 19 Implementation of parallel fitness evaluation 

2) Multi-layer Partition and Relaxation for Traffic Signals  
In a large traffic network, the number of traffic signals is 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

Iteration Counter

G
ap

 (%
)

 

 
Base Case
Heavy-loaded Case
Approximation Error

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Iteration Counter

G
ap

 (%
)

 

 
With Waiting Time
Without Waiting Time
Acceptable Error

1 2 4 6 8 10 12 14 16 18 20 21 22
0

10

20

30

40

50

60

70

80

Iteration Counter

G
ap

 (%
)

 

 
With Waiting Time
Without Waiting Time
Acceptable Error

 

 

 



1949-3053 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2526032, IEEE
Transactions on Smart Grid

 10 

commonly very large and the simultaneous optimization of all 
traffic signal settings would be unrealistic due to its prohibitive 
computational cost. Generally, traffic signals only affect local 
traffic flows in a geographical area. That is, traffic signal 
settings in a certain area would have negligible effects on 
drivers travelling in other areas. Accordingly, it is reasonable to 
optimize traffic signal settings locally.  

Accordingly, we partition the entire network into several 
subareas and allocate layers to these subareas. Each layer is 
composed of several subareas with uncorrelated traffic signal 
settings among the subareas. Figure 20 shows a three-layer 
partition. Here the outer and the inner layers are numbered the 
lowest and the highest, respectively. The optimization starts 
from the lowest-numbered layer and proceeds upward through 
the layers until all traffic signal settings in the entire network 
are optimized. During the process of finding optimal traffic 
signal settings in a certain layer, the optimization algorithm is 
executed in parallel for all subareas while traffic signals in the 
higher-numbered (lower-numbered) layers are controlled by 
their default (optimal) settings. 

Layer 1

Layer 1

Layer 1

Layer 1

Layer 2Layer 2

Layer 2

Layer 2

Layer 3

Tier 1

Tier 1

Tier 2

 
Fig. 20 Multi-layer partition 

3) Pre-defined Settings for Certain Traffic Signals 
According to vehicle counts, the settings of certain traffic 

signals can be pre-defined to reduce congestion. For instance, 
when the traffic flow in one direction is much lighter than that 
in the perpendicular direction, we may fix the green (red) time 
in this direction to be set at its minimum (maximum) value. 
This approach could help reduce the search space and thereby 
accelerate the solution process. 

C. Acceleration of Solution Process at Lower-level Problem 

1) Network Pruning for Finding the Expected Fastest Routes 
Similar to the original Dijkstra’s algorithm, the revised 

Dijkstra’s algorithm might become quite costly for finding the 
fastest routes in large-area traffic networks [23]. Intuitively, 
this algorithm will be expedited if the network size is reduced. 
Here we propose a heuristic approach to speed up the route- 
finding process by pruning the network for each driver.  

The heuristic approach works as follows: First, we classify 
all the trips into two categories of short and long distance by 
comparing the Euclidean distances between origins and 
destinations with a pre-specified value. Second, we form the 
reduced network for each driver with reference to its trip. 
Specifically, for a short distance trip, rectangle boundaries are 
formed by the four connected strictly horizontal and vertical 
paths between its origin and destination. Only the nodes and 
edges inside or on the boundaries are retained to form the 
required reduced network. Meanwhile, for a long distance trip, 
we keep the closest nodes on both sides along the direction of 
the straight line (corresponding to the Euclidean distance 

between its origin and destination) as well as the edges 
connecting these nodes. In case there exists no feasible route for 
some trip within its reduced network, that network is then 
expanded by including all the neighboring nodes and 
in-between edges of the previous network. This expansion 
process continues until there is at least one feasible route in the 
newly-formed network.  

Fig. 21 provides a simple example in the grid network for 
forming two types of pruned networks for two drivers with 
different trip distances. In accordance with drivers’ intuition for 
choosing routes in real life, this heuristics approach reduces the 
entire network to driver-dependent local areas which are 
around the diagonals regarding the straight-line distances of 
their trips, thereby leading to considerable increase in the 
subsequent fastest-route algorithm with reasonable results. 

First Expansion

Reduced Network

 
Fig. 21 Network pruning heuristic method 

2) Parallel Multi-subarea Microscopic Traffic Simulation 
When the simulated traffic network is large, we can perform 

a spatial decomposition by dividing the entire network into 
several contiguous subareas and then run microscopic traffic 
simulation for each subarea in parallel. Such multi-subarea 
simulation can also be implemented using the master-slave 
mechanism (see Fig. 22). Accordingly, vehicle movements 
within each subarea are simulated locally by microscopic 
simulation. A master controller is responsible for 
synchronizing and coordinating the simulation process of each 
subarea when vehicles are crossing the borders between any 
two adjacent subareas. Since the simulation speed depends 
largely on the problem size, parallelized microscopic traffic 
simulation for each subarea runs faster than that for the entire 
area, which leads to an increase in the entire simulation process.  

Master Controller
Synchronization

Coordination

Subarea 1
Microscopic Simulation

Subarea 2
Microscopic Simulation

Subarea NS
Microscopic Simulation

...
 

Fig. 22 Implementation of parallel microscopic traffic simulation 

3) Sequential Multi-subinterval Dynamic Traffic Assignment 
When the simulation interval is long, we can perform 

temporal decomposition by cutting the whole interval into 
several successive subintervals and then assigning numbers in 
sequence to drivers departing each subinterval. In each 
subinterval, a complete DTA process is implemented and 
network conditions in the subsequent subintervals are updated 
by converting the DTA results into a time-dependent 
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background traffic. This process is shown in Fig. 23. With the 
implementation of this heuristic method, the network 
equilibrium is approximated in each subinterval instead of the 
entire interval, thereby resulting in near-optimal solutions with 
fewer computational efforts.  

Perform Dynamic Traffic Assignment in this Subinterval
Based on microscopic simulation in the environment SUMO

Next Subinterval Finished?

End

No

Yes

Prepare Data Sets in this Subinterval
Road network conditions, Traffic signal control logics,

Drivers’ trip information and departure time

Update Network Conditions for Subsequent Subintervals
By converting traffic assignment decisions in this subinterval 

into time-dependent background traffic

 
Fig. 23 Sequential multi-subinterval dynamic traffic assignment 

VI. CONCLUSIONS AND FUTURE WORK 
This paper proposes a bi-level optimization framework for 

optimally setting the regional traffic signals. The frequency for 
optimizing traffic signals mainly depends on traffic patterns. 
Specifically, when the traffic pattern is dynamically changing 
(e.g. peak hours), traffic signal settings should be optimized 
more frequently to accommodate the complex traffic demands; 
when the traffic pattern remains steady (e.g. late night hours), 
traffic signal settings should be optimized less frequently. Note 
that this optimization framework can be easily extended to 
consider acyclic signal patterns which are more suitable for 
cases when traffic conditions are dynamically changing within 
a short time period. In addition, the proposed optimization 
framework allows smooth transitions between successive 
traffic signal settings by taking offsets into account. 

To solve the proposed optimization problem in a 
satisfactory manner, the paper applies HGA to the 
corresponding solution framework. Since HGA decouples the 
upper and the lower level problems, more sophisticated models 
can be plugged into upper-level and lower-level frameworks 
for achieving more reasonable results. Note that other efficient 
artificial intelligent methods (e.g., Particle Swarm 
Optimization [24], Harmony Search Algorithm [25]) can be 
used in place of GA to perform the global search for the optimal 
setting. In addition, we are validating the proposed acceleration 
strategies for much large-area traffic network applications. 
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