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a b s t r a c t

In this paper, an analytical simplified method for derivation of the average stress–average strain
relationship of imperfect steel plates taking into account of both geometric and material nonlinearities is
presented. The method utilizes the theory of elastic large deflection analysis of plates in the elastic
region, and also the theory of rigid-perfectly plastic mechanism analysis of plates in the plastic region.
The ultimate strength of the plate is predicted using an empirical formulation. The steel plates may be
entirely un-corroded or both-sides randomly corroded. The algorithm can be easily implemented in
methods for evaluation of ship hull girder ultimate strength as well as in the estimation of the ultimate
capacity of offshore structures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In design of ships and offshore structures, it is essential to ensure
that the structure has sufficient strength to sustain extreme loading
situations. Such marine structures are mostly assembled of plates and
plated elements. Thus, strength of plates and other plated elements is
crucial for the overall structural capacity or in other words for the
ultimate strength of the whole structure. For a thorough assessment
of a structural design, for understanding possible improvements and
to predict the consequences in the event of failure, an approximation
of the value of ultimate strength is not sufficient. The complete
behaviour, up to collapse and beyond, of the structure has to be
simulated to gain insight into causes and effects of a structural failure.

For the analysis of large marine structures, an accurate and efficient
approach is required to obtain results within a reasonable space of the
time. Despite the enormous development in computer technology,
elastic-plastic large deflection analyses with conventional finite ele-
ment analysis (FEA) are too time-consuming for large structures.
Therefore, a simplified method has to be employed to reduce the
computational time and/or increase the size of the structural parts that
can be analysed.

For cross sections of ships in bending, methods to obtain the
moment-curvature relationship, Fig. 1, considering the collapse of

parts of the cross section have been developed. One of the most
knownmethods is the Smith’s method [1,2], in which the ship cross-
section is divided into small elements each of which is composed of
plates without/with stiffener. Average stress–average strain relation-
ships of all elements are derived before the analysis of the whole
cross-section progresses as follows: curvature is applied incremen-
tally about the instantaneous neutral axis, the strain of each element
is calculated, the corresponding stress is taken from the stress–strain
curves previously derived, and the corresponding moments is obtai-
ned by integration over the cross-section, Fig. 2. FEA is usually
applied in order to derive the average stress–average strain relation-
ships of plate and stiffened plate elements. Application of FEA in
derivation of average stress–average strain relationships of the
plated elements in the cross-section of a ship hull girder or any
other box-shape structure would mean spending a considerable
amount of cost and time. Therefore, it is felt that there is a need to
develop or propose a simplified method in order to perform such
calculations. These calculations create a significant step in progres-
sive collapse analysis of marine structures.

Analytical method proposed in this paper, is one suitable frame-
work for implementing a general approach to collapse analysis, since it
leads to the reduction of solution process either in time or in cost.
Combining the theory of elastic large deflection analysis with rigid-
plastic mechanism analysis, a simple formulation is expressed in order
to derive average stress–average strain relationships of plates. The
accuracy of the method or formulation is verified against the FEA
obtained results. Employing such a formulation, the ultimate strength
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evaluation of ships and offshore structures is possible in a very short
time with reasonable accuracy and cost.

2. General assumptions

The longitudinal stiffening system is usually employed in large
ships at their mid-length part, especially in the deck and bottom

structures. If an extreme bending moment acts on a hull girder, the
most possible collapse mode may be the overall collapse of
stiffened panel after local collapse of individual plate elements
between stiffeners.

The following assumptions are made in the derivation of the
average stress–average strain relationships of the plate elements:

1. Attached plating between longitudinal stiffeners behaves as an
isolated plate.

2. The material is assumed to be elastic-perfectly plastic.

Average stress–average strain relationships of the isolated
plates are derived combining the results of elastic large deflection
analysis and rigid plastic mechanism analysis.

3. Average stress–average strain relationship of un-corroded
plates

3.1. Welding induced initial deflections

In a thin-walled plated structure, the initial deflection of a local
plate panel is produced by the fillet welding between plate and
stiffeners. The resulting typical shape of initial deflection is the
so-called thin-horse mode that deflects in the same direction in
adjacent spans or bays. An example of initial deflection of the
inner-bottom plating of an existing Handy-sized Bulk Carrier,
measured by Yao et al. [3], is illustrated in Fig. 3. As shown, the
rectangular plate panels have an almost symmetric mode of initial
deflection across the bays and spans. The usual assumption of
asymmetric modes of initial deflection based on the linear elastic

Notations

AR aspect ratio of the plate
a plate length
b plate breadth
t thickness of plate in un-corroded condition
teq effective thickness of plate in corroded condition
tP thickness function of plate in un-corroded condition
E Young modulus of material
ν Poisson’s ratio of material
m number of half-waves in longitudinal direction
m0, m45, m90 some constants in the rigid-plastic mechanism

analysis relationships
n number of half-waves in transverse direction
β plate slenderness
F Airy’s stress function
μ mean corrosion depth
S standard deviation of random thickness variations
ny number of years of exposure
dw uniform reduction in thickness

r1, r2 random numbers corresponding to the corroded sur-
faces of the plate

zUpSRF Z-coordinate of the upper surface of the plate
zLowSRF Z-coordinate of the lower surface of the plate
Ux displacement along x-axis
Uy displacement along y-axis
Uz displacement along z-axis
A0ij coefficients in initial deflection function
w0 initial deflection function
w0 max maximum magnitude of initial deflection
we elastic deflection
wp plastic deflection
ε strain
εY material yield strain
σ stress
σY material yield stress
σU material ultimate stress
σUlt ultimate compressive strength of the plate
r, r�1 rth and (r�1)th values of the parameter

Fig. 1. Typical moment–curvature relationship.

Fig. 2. Ship hull girder bending concept (Smith’s method).
Fig. 3. Real distribution of initial deflection or so-called thin-horse mode initial
deflection [3].
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buckling analysis gives very conservative predictions of the ulti-
mate strength [4].

Theoretically, for a plate of length a, breadth b, and thickness t,
the initial deflection of a thin-horse mode can be expressed by a
double sinusoidal series as

w0 ¼ ∑
1

i ¼ 1
∑
1

j ¼ 1
A0ij sin

iπx
a

sin
jπy
b

ð1Þ

Among the deflection components in the direction of the
shorter side of the plate (y-direction), the first term with one
half-wave has the greatest effect on the initial deflection mode.
Thus, a simpler form of the initial deflection equation can be
written as follows

w0 ¼ ∑
1

i ¼ 1
A0i sin

iπx
a

sin
πy
b

ð2Þ

Ueda and Yao [5] idealised this mode with another expression
as follows which includes only odd terms

w0 ¼ ∑
21

i ¼ 1;3;5;…
A0i sin

iπx
a

sin
πy
b

ð3Þ

Later Yao et al. [6], introduced even terms also in this mode,
and finally the idealised thin-horse mode of initial deflection took
the following form

w0 ¼ ∑
11

i ¼ 1
A0i sin

iπx
a

sin
πy
b

ð4Þ

The initial deflection is herein assumed to be in the idealised
thin-horse mode. The coefficients of this mode (A0i), nondimen-
sionalised by plate thickness (t), i.e., A0i=t, are given in Table 1 [6]
as functions of plate aspect ratio.

In Fig. 4, the maximum initial deflection measured in Japanese
shipyards [5] is plotted against β2t, where β is the slenderness
parameter of the plate defined by

β¼ b
t

ffiffiffiffiffiffi
σY

E

r
ð5Þ

σY and E are the yield stress and Young’s modulus, respectively.
Smith et al. [7] have categorized their measured data of maximum
initial deflection by statistical analysis into three levels, “slight”,
“average” and “severe”, and formulated equations as shown in
Fig. 4. “slight” and “severe” correspond to 3% and 97% fractals of
probability distribution function, respectively. On the other hand,
Japanese Ship Quality Standard (JSQS) prescribes an upper limit of
6 mm for the maximum allowable initial deflection. It can be seen
from Fig. 4 that the measured data are distributed such that the
“average” line and the allowable limit prescribed by JSQS form an
upper bound. Taking average level of the measured maximum
deflection in Fig. 4, the maximum magnitude of initial deflection,
w0max, is taken as

w0 max ¼ 0:05β2t ð6Þ
To consider the plate continuity, it is assumed that the plate is

simply-supported along its four edges which remain straight while
subjected to in-plane movements.

Table 1
Coefficients of thin-horse mode initial deflection as a function of plate aspect ratio [6].

a/b A01/t A02/t A03/t A04/t A05/t A06/t A07/t A08/t A09/t A010/t A011/t

1oa/bo√2 1.1158 �0.0276 0.1377 0.0025 �0.0123 �0.0009 �0.0043 0.0008 0.0039 �0.0002 �0.0011
√2oa/bo√6 1.1421 �0.0457 0.2284 0.0065 0.0326 �0.0022 �0.0109 0.001 �0.0049 �0.0005 0.0027
√6oa/bo√12 1.1458 �0.0616 0.3079 0.0229 0.1146 �0.0065 0.0327 0.000 0.000 �0.0015 �0.0074
√12oa/bo√20 1.1439 �0.0677 0.3385 0.0316 0.1579 �0.0149 0.0743 0.0059 0.0293 �0.0012 0.0062
√20oa/bo√30 1.1271 �0.0697 0.3483 0.0375 0.1787 �0.0199 0.0995 0.0107 0.0537 �0.0051 0.0256

Fig. 4. Maximum initial deflections of rectangular plates measured in ships [5].

Fig. 5. Changes in deflection mode and its magnitude. (a) Idealised thin-horse
mode initial deflection. (b) Equivalent stable mode initial deflection. (c) Final
deflection mode after applying in-plane compression.
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The total deflection mode under the action of in-plane long-
itudinal compression is assumed to follow as:

w¼ ∑
11

i ¼ 1
Ai sin

iπx
a

sin
πy
b

ð7Þ

3.2. Stable mode

With the increase of the compressive load above the buckling
load, just one single deflection component among the deflection
components Ai is magnified [6]. Consequently, taking single
deflection modes as follows can approximate the behaviour of
the plate

w0 ¼ A0m sin
mπx
a

sin
πy
b

ð8Þ

and

w¼ Am sin
mπx
a

sin
πy
b

ð9Þ

In above equations, m is the number of half-waves in the stable
deflection mode above the plate buckling load, and is determined
as [6]

m¼
1 : a=bo1:3
k : k�0:7ra=bokþ0:3

(
ð10Þ

where a/b is the plate aspect ratio and k is an integer greater than
1. Hereafter, A0m and Am are simply denoted as A0 and A,
respectively. Fig. 5 exhibits changes in the deflection mode of
the plate from beginning to the end of simulations.

3.3. Relationship between average stress and deflection

3.3.1. Elastic range
The relationship between average stress and deflection in the

elastic range is derived applying the elastic large deflection analysis
(ELDA). The differential equation representing the compatibility
condition of an initially deflected plate is expressed as

∇4F ¼ E
∂2w
∂x∂y

� �2

�∂2w
∂x2

∂2w
∂y2

"
� ∂2w0

∂x∂y

� �2

þ∂2w0

∂x2
∂2w0

∂y2

#
ð11Þ

Fig. 6 shows a plate under longitudinal compression σ ¼ σx.
Substituting the assumed initial deflection, Eq. (8), and total

deflection, Eq. (9), into Eq. (11), the Airy’s stress function is
obtained in the following form

F ¼ EðA2�A2
0Þ

32
α2 cos

2mπx
a

�
þ 1
α2 cos

2πy
b

�
þσ ð12Þ

where

α¼ a
mb

ð13Þ

Fig. 6. Rectangular plate under longitudinal compression.

Fig. 7. Plastic mechanisms of plate under compression.

Fig. 8. Schematic representation of the present method for constructing the
average stress-deflection and average stress–average strain relationships of the
plate. (a) Average stress-deflection relationship. (b) Average stress-average stain
relationship.
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Having Airy’s stress function, in-plane stress components are
easily obtained as

σxp ¼ ∂2F
∂y2

;σyp ¼ ∂2F
∂x2

;σxyp ¼ � ∂2F
∂x∂y

ð14Þ

Applying the stress–strain relationships for the plane stress
state, the corresponding in-plane strains are

εxp ¼
1
E
ðσxp�νσypÞ;

εyp ¼
1
E
ðσyp�νσxpÞ;

γxyp ¼
2ð1þνÞ

E
τxyp ð15Þ

where ν is Poisson’s ratio. On the other hand, the bending strain
components are given as

εxb ¼ �z
∂2ðw�w0Þ

∂x2
;

εyb ¼ �z
∂2ðw�w0Þ

∂y2
;

γxyb ¼ �2z
∂2ðw�w0Þ

∂x∂y
ð16Þ

While the corresponding bending stress components are

σxb ¼
E

1�ν2
ðεxbþνεybÞ;

σyb ¼
E

1�ν2
ðεybþνεxbÞ;

τxyb ¼
E

2ð1þνÞγxyb ð17Þ

The principle of virtual work is expressed as

δwi ¼ δwe ð18Þ
where δwi and δwe are the internal and external virtual work done
for a virtual deflection δA, respectively, and are expressed as

δwi ¼
Z
v
½ðσxpþσxbÞðδεxpþδεxbÞþðσypþσybÞðδεypþδεybÞ

þðτxypþτxybÞðδγxypþδγxybÞ�dv ð19Þ

and

δwe ¼ �σbtδu ð20Þ
Therefore, the average stress-deflection relationship is obtained

as follows

π2E

16b2
1
α2þα2

� �
ðA2�A2

0Þþσcr0 1�A0

A

� �
�σ ¼ 0 ð21ÞFig. 9. Pitted web plate of the hold frame of a bulk carrier [10]. (a) Pitted surface.

(b) Cross-sectional view.

Fig. 10. Plate with general corrosion. (a) Lower surface. (b) Upper surface.
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where

σcr0 ¼
π2t2E

12ð1�ν2Þb2
1
α
þα

� �2

ð22Þ

σcr0 is buckling strength of a simply-supported rectangular plate.
The incremental form of Eq. (21) is

π2E

8b2
1
α2þα2

� �
A�ΔAþσcr0

A0

A2

� �
�ΔA�Δσ ¼ 0 ð23Þ

where

ΔA¼ Ar�Ar�1 ð24Þ

and

Δσ ¼ σr�σr�1 ð25Þ

3.3.2. Plastic range
With the increase in the applied end-shortening displacement,

a plate undergoes buckling and yielding, and then attains its
ultimate strength. After the ultimate strength, the compressive
load decreases with the increase of the applied end-shortening
displacement and deflection.

The average stress–plastic deflection relationship at the post-
ultimate strength region is derived according to the rigid-plastic
mechanism analysis (RPMA) assuming rigid-perfectly plastic
material. Depending on the plate aspect ratio (a/b), two config-
urations of plastic mechanism may exist as illustrated in Fig. 7. For
these mechanisms, the following relationships between the

average stress and deflection coefficient are derived [8]

m45þð1=α�1Þm90=2¼ ð2=α�1Þσ � A for αr1:0 ð26Þ

m45þðα�1Þm0=2¼ σ � A for α41:0 ð27Þ
where σ ¼ σ=σY ; A¼ A=t and :

m90 ¼ 1�σ2 ð28Þ

m0 ¼ 2m90=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3m90

p
ð29Þ

m45 ¼ 4m90=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ15m90

p
ð30Þ

3.4. Relationship between average stress and average strain

3.4.1. Elastic range
According to elastic large deflection analysis, the in-plane

shortening in x-direction will become

u¼ 1
b

Z a

0

Z b

0
εx�

1
2

∂w
∂x

� �2

� ∂w0

∂x

� �2
)(" #

dydx¼ �a
E
σ�m2π2

8a2
ðA2�A2

0Þ

ð31Þ
Dividing u by the plate length a, average stress–average strain

relationship is derived as follows

ε¼ �1
E
σ�m2π2

8a2
ðA2�A2

0Þ ð32Þ

And its incremental form would be

Δε¼ �1
E
Δσ�m2π2

4a2
A�ΔA ð33Þ

where

Δε¼ εr�εr�1 ð34Þ

Fig. 11. (a) Extent of the model, (b) boundary and loading conditions, (c) finite
element discretisation.

Fig. 12. Actual and applied stress–strain curves for normal strength (NS) steel.
(a) Actual stress–strain curve. (b) Idealised bilinear model of stress–strain curve.
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3.4.2. Plastic range
Based on rigid-plastic mechanism analysis, average stress–

average strain relationship is derived as

ε¼ �1
E
σ�2m2

a2
ðA2�A2

0Þ for αr1:0 ð35Þ

ε¼ �1
E
σ�2m2

ab
ðA2�A2

0Þ for α41:0 ð36Þ

Also, the incremental forms of above equations are

Δε¼ �1
E
Δσ�4m2

a2
A�ΔA for αr1:0 ð37Þ

Δε¼ �1
E
Δσ�4m2

ab
A�ΔA for α41:0 ð38Þ

3.5. Procedure to obtain the average stress–deflection and average
stress–average strain curves

The procedure to create the average stress–deflection and
average stress–average strain curves is shown schematically in
Fig. 8. The following steps are required to be done for obtaining
these relationships

(1) Using Eq. (23) the average stress–deflection curve in the elastic
range is drawn (dashed line in Fig. 8(a)).

Fig. 13. Comparison between simulated average stress–average strain relationships with FEA results for the un-corroded plate (a¼2400 mm, b¼800 mm, made of NS steel).
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(2) The average stress–deflection relationship is drawn in the
plastic range based on Eqs. (26) and (27) (dotted-dashed line
in Fig. 8(a)).

(3) The initial yielding stress level (point A) is determined by
checking the stress state inside plate. A horizontal line AC is
drawn at the initial yielding stress level.

(4) The ultimate compressive strength (σUlt) of the plate is
accurately estimated by the second author’s formula [9] as
follows

σUlt=σY ¼
1:0 for βr1:73
0:1þ1:571=β for β41:73

(
ð39Þ

(5) The stress level corresponding to the predicted ultimate
strength is shown in Fig. 8(a) by the line cd. The deflection
at the ultimate strength level for point B is determined by
assuming cB=cd as 1/3.

(6) Between points A and B, the deflection is approximated as

w¼weþcB 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ�σAð Þ2= σB�σAð Þ2

q� �
ð40Þ

where we is the elastic deflection at the stress level σ.
(7) In the same manner, average stress-deflection relationship

between points B and C is determined using the following
equation

w¼wpþBd 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ�σAð Þ2= σB�σAð Þ2

q� �
ð41Þ

where wp is the plastic deflection at the stress level σ.
(8) In the same manner, the average stress–average strain curve

(Fig. 8(b)) is obtained. To do that, Eq. (33) in the elastic range
and Eqs. (37) and (38) in the plastic range are applied.

A special computer program was written in Fortran 77 lan-
guage in order to implement the explained procedure in an
incremental way.

4. Average stress–average strain relationship of both-sides
randomly corroded plates

Corrosion in marine structures is mainly observed in two
distinct types, namely, general corrosion and localised corrosion.
As an example of localised corrosion, reference may be made to
the corrosion of hold frames in way of cargo holds of bulk carriers
which have coating such as tar epoxy paints, Fig. 9 [10]. Generally,
pitting corrosion is defined as an extremely localised corrosive
attack and sites of the corrosive attack are relatively small
compared to the overall exposed surface [11]. In the case of
localised corrosion observed on hold frames of bulk carriers, the
sites of the corrosive attack, that is, pits are relatively large (up to
about 50 mm in diameter).

General corrosion is the problemwhen the plate elements such
as the hold frames of bulk carriers have no protective coating,
Fig. 10. Both surfaces of the plate may be corroded, in a pattern like
the sea waves spectrum, as shown in Fig. 10.

Based on the extensive results obtained by the authors [12,13],
strength characteristics of a plate having random corrosion on it's
both sides can be effectively assessed by considering an equivalent
un-corroded plate with the equivalent thickness described by

teq ¼ t�μ�S ð42Þ
where t, μ and S are respectively representing the thickness of
plate in un-corroded condition, mean corrosion depth and stan-
dard deviation of random thickness variations. Thus, for a both-
sides randomly corroded plate of length a, breadth b and original

thickness t in un-corroded condition with corrosion parameters of
μ and S, firstly the equivalent thickness is to be determined using
Eq. (42). Then the same procedure as explained in Section 3.5 is to
be applied for another plate of the same length and breadth, but
having an equivalent uniform thickness of teq.

5. Accuracy of the method

5.1. Un-corroded plates

The accuracy of the average stress–average strain relationships
obtained by the analytical formulas and expressions derived
above, are verified against those obtained applying FEA. Extent
of plate model applied in FEA and its loading, meshing and
boundary conditions have been shown in Fig. 11. In order to
perform elastic–plastic analysis of plates, ANSYS code [14] has
been used. Influences of both material and geometrical nonlinea-
rities induced by yielding and large deflection are considered in
the analyses.

Plates are modelled by SHELL181 elements with elastic–plastic
large deflection solution option. SHELL181 is suitable for analyzing

Fig. 14. Finite element analysis modeling details for general corrosion. (a) Different
surfaces and relevant parameters. (b) Plate descretisation. (c) Perspective view of
the randomly corroded plate with magnified thickness.
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thin to moderately-thick shell structures. It is a 4-node element
with six degrees of freedom at each node: translations in the x, y,
and z directions, and rotations about the x, y, and z-axes. SHELL181
is well-suited for linear, large rotation, and/or large strain non-
linear applications. Change in shell thickness is accounted for in
nonlinear analyses. In order to obtain reasonable results a number
of sensitivity analyses were carried out to find out the optimum
mesh density and proper values of nonlinear analysis options. A
sample of finite element descretisations is represented in Fig. 11(c),
which is relevant to a plate of aspect ratio equal to 3 with 30 and
10 numbers of mesh divisions in longitudinal and transverse
directions, respectively.

Axial compression was simulated by an imposed displacement
in longitudinal direction, applied in small enough increments to
ensure that the analysis would closely follow the model load–
response curve. The material was assumed of normal strength or
so-called NS steel type, for which actual and applied stress–strain
curves are shown in the Fig. 12. Yield stress (σY), Young’s modulus
of elasticity (E) and Poisson’s ratio (ν) of the material were
respectively taken as 235 MPa, 205.8 GPa and 0.3.

It is evident that strain-hardening effect has some influence on
the nonlinear behaviour of plates. The degree of such an influence
is a function of many factors including plate slenderness. In this
study, material behaviour for plate was modelled as a bi-linear
elastic-plastic manner with strain-hardening rate of E/65, Fig. 12
(b). This value of strain-hardening rate was obtained through a
large number of elastic–plastic large deflection analyses made by
Khedmati [9]. w0 and w0 max are obtained respectively according to
Eqs. (4) and (6).

Some comparisons for a range of thin to thick plates are shown
in Fig. 13. The plates have a length of 2400 mm, a breadth of

800 mm and a thickness of 10 mm to 20 mm. As can be seen from
the results, good correlations are observed among them, although
some more improvements are to be attempted in the future.

5.2. Both-sides randomly corroded plates

Randomly corroded surfaces were generated for both sides of
the plate models. A special purpose computer code was written in
FORTRAN90 language. Generation of randomly corroded surfaces
was achieved using the features of the DRANDM function of
FORTRAN90. There was one limitation in the generation process
and it was standard deviation of the plate thicknesses at different
nodes that was set to 0.23 mm, as investigated by Ohyagi [15].
Ohyagi corrosion model is adopted here as

dw ¼ 0:34ny ð43Þ
where ny is the number of years of exposure and dw is the uniform
reduction in thickness in millimeters after ny years of exposure.
Eq. (43) represents a linear corrosion model and is used here in as
an example. It is obvious that the effectiveness of simulation
procedure explained in this paper is independent of the corr-
osion model.

Finally the z-coordinate of upper and lower surfaces of the
plate can be defined as, Fig. 14(a)

zLowSRF ¼w0�
t�dw
2

�r1 ; zUpSRF ¼w0þ
t�dw
2

þr2 ð44Þ

where

tp ¼ zUpSRF�zLowSRF ¼ t�dwþr1þr2 ð45Þ
and also r1 and r2 are the random numbers, corresponding to the

Fig. 15. Comparison between simulated average stress–average strain relationships with FEA results for the corroded plate.
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random thickness variation of the plate surfaces, produced by
DRANDM function. Again w0 and w0 max are obtained respectively
according to Eqs. (4) and (6).

There are several finite element techniques available to model
uniform corrosion. The easiest way is to reduce the thickness of
the plate in surface, carry out buckling analysis to get the buckled
shape of plate with uniform corrosion and finally to perform
nonlinear finite element control to get the ultimate strength of
plate by using stress versus strain relationship. Khedmati and
Karimi [16] modelled corroded plate with 3-D 20-node structural
solid element but this method also cannot represent the real
situation and easily tends to fail to converge during nonlinear
control based on author’s experience.

Fig. 14(b) represents modelling details in finite element analysis,
while Fig. 14(c) shows a magnified view of the plate with surfaces
simulating random corrosion. The same elements in ANSYS code
were used in descretisation of the corroded plate models.

Some comparisons between simulated average stress–average
strain relationships with FEA results for the corroded plate models
are shown in Fig. 15. Again good correlation is observed between
two groups of FEM results and analytical ones.

6. Conclusions

A simple method for simulation of the average stress–average
strain relationships of plates under the action of longitudinal axial
compression is developed. The features of the method are:

� The results of elastic large deflection analysis and rigid-plastic
mechanism analysis are combined together in derivation of the
average stress–average strain relationship of the plates. The
influences of buckling and plastic deformations are accounted
for in the formulations.

� The procedure is capable of simulating the average stress–
average strain relationship for un-corroded as well as both-
sides randomly corroded plates.

� The results show that the explained method is a simple and
relatively accurate and can be applied effectively in the ulti-
mate strength evaluation of ship hull girders and other box-like
structures.
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